Preliminary steps before starting the experiment:

1) **Click the Launch button to start the experiment.**

2) **Click OK to create a new session**
3) Click the **Screen Sharing** option and click connect to establish the session

4) Click the **VNC viewer** button on the taskbar of the Windows 7 host that opens soon after and enter **10.1.200.44** as the ip address of the VNC server. Click connect to establish the session
5) Click Continue to connect to the kali box.

6) Gently hover over the center of the VNC viewer window to find the menu with options. Click the **Full Screen View** button (fifth from the left) for a better experience.
7) This is how a full screen Kali box looks like.

Actual Experiment:

Vulnerability Assessment with OpenVAS

Learning Outcomes

- Understand the importance of discovering system vulnerabilities using detailed scans.
- Analyze the severity of their impacts and potential solutions to patch critical vulnerabilities.

Starting OpenVAS

To start OpenVAS, open the terminal and type “openvas-start”. In case you see any “error” while it’s startup, try “openvas-stop” and then start the OpenVAS again.

Login and Starting a Scan

Open a web browser and navigate to “https://127.0.0.1:9392/login/login.html”
We have placed a bookmark on the browser's toolbar with a link to this page.

The login credentials are as follows:

username: root
password: root

To start a scan, enter an IP address in the Quick Start field and click “Start Scan”
Welcome dear new user!
To explore this powerful application and to have a quick start for doing things the first time, I am here to assist you with some hints and short-cuts.

I will appear automatically in areas where you have created no or only a few objects. And disappear when you have more than 3 objects. You can call me whenever you need some assistance.

Quick start: Immediately scan an IP address
IP address or hostname:

10.0.0.10

For this short-cut I will do the following for you:
1. Create a new Target with default Port List
2. Create a new Task using this target with default Scan Configuration
3. Start this scan task right away
4. Switch the view to reload every 30 seconds so you can
You should then see a new scan appear in progress in the list of tasks.
To view the report of the scan, go to Scan Management → Reports

Then, click on the date of the scan to view its details.

This can be done even if the scan is not complete yet.
From this screen you can investigate the different results from the scan.

<table>
<thead>
<tr>
<th>Vulnerability</th>
<th>Severity</th>
<th>Host</th>
<th>Location</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP timestamps</td>
<td>2.5 (Low)</td>
<td>10.0.0.10</td>
<td>general/tcp</td>
<td></td>
</tr>
<tr>
<td>ICMP Timestamp Detection</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>general/icmp</td>
<td></td>
</tr>
<tr>
<td>OS fingerprinting</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>general/tcp</td>
<td></td>
</tr>
<tr>
<td>Hostname discovery from server certificate</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>general/tcp</td>
<td></td>
</tr>
<tr>
<td>Traceroute</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>general/tcp</td>
<td></td>
</tr>
<tr>
<td>SSH Protocol Versions Supported</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>22/tcp</td>
<td></td>
</tr>
<tr>
<td>SSH Server type and version</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>22/tcp</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>22/tcp</td>
<td></td>
</tr>
<tr>
<td>HTTP Server type and version</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>80/tcp</td>
<td></td>
</tr>
<tr>
<td>Services</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>80/tcp</td>
<td></td>
</tr>
<tr>
<td>No 404 check</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>80/tcp</td>
<td></td>
</tr>
<tr>
<td>Apache Web Server Version Detection</td>
<td>0.0 (Log)</td>
<td>10.0.0.10</td>
<td>80/tcp</td>
<td></td>
</tr>
</tbody>
</table>
Tasks:

1. Once you get familiar with the procedure to scan a particular host, please try to scan other hosts that you had identified earlier in each of the corporate, control and substation networks.

2. Take some time to look through the various types of results from each scan to understand the type of vulnerabilities hosts have and how those could potentially affect the overall system availability/reliability.

3. With the scan results obtained from the first two labs and any other information you might have collected from the SCADA system, try to come up with one or two possible attacks as a penetration tester (Do not need to implement it).

Internet access from your kali box:

Some of you complained that the Kali does not have access to the internet. Have asked your classmate Jacob Drahos to set up one proxy server for all the Kalis. Please check following notes from him to use the web proxy.

Configure Iceweasel (Firefox) for the Kali as follows:

- Open Iceweasel
- Go to connection settings
 - Edit -> Preferences -> Advanced Tab -> Network Tab (within advanced tab) -> Settings
- Enter proxy settings for the workaround keyhole
 - `27.67.83.253:3128`
 - Use for all protocols (see attached image)
- Save settings and exit (Enter works if it is cut-off due to screen resolution)

You should now be able to browse the web with Iceweasel.

If you want command-line tools to be able to access the internet, you will have to set the `http_proxy` and `https_proxy` environment variables:

```
export http_proxy="http://27.67.83.253:3128"
export https_proxy="$http_proxy"
```
Now command-line tools (in that shell session) will work through the proxy, for example curl or wget. This might not be particularly useful for now, but if you need to do it, you know how.